GEANT testbed service (GTS) for R&E community
Based on cloud technologies

Nicolai ILIUHA, nicolai.iliuha@renam.md
Task 3 participant, GEANT4-2, JRA2 “Network Services Development”
Leading specialist, Research and Educational Networking Association of Moldova (RENAM)

RENAM,
www.renam.md

BELNET,
www.belnet.be

2018-10-29/30, Brussels, Belgium,
“4th GTS Tech and Futures Forum”
The “GEANT Testbeds Service” (GTS) is completely new GEANT Service, that start in Production State from Q4 of 2018 year. Till the end of Q4 of 2018 year GTS is accessible for users in testing mode.
GÉANT Testbeds Service has been deployed within the GÉANT core network at 8 Points of Distribution (PoDs).

At each POD are compute nodes, baremetal servers, OpenFlow switches connected over dataplane router (Juniper MX). Router links towards other PoDs over L2 (WAN or LAN).
The “GEANT Testbeds Service” (GTS) offers user defined experimental networks to the network research community for the purpose of testing novel networking and telecommunications concepts, at scale, and across a geographically realistic European footprint.

GÉANT Testbeds Service (GTS) provides dynamically created, fully isolated, production-grade, packet testbeds as a service for the research and education community worldwide.
Geant Testbed Service (GTS)
Resources, available for users in Testbeds

Host: A virtual machine on compute node at one of 8 locations;

BMS: (Bare Metal Server) represents a physical server that is controlled by the testbed user. Also can be in one of 8 locations;

VSI: (Virtual Switch Instance) is the new OpenFlow resource, which can be backed by either a OVS instance or by a hardware switch. GTS currently uses Corsa DP 2100 Series switches which support OpenFlow specification 1.3. Also can be in one of 8 locations;

Link: Represents a virtual circuit between 2 resources. Always has exactly two ports for source (src) and destination (dst). 10Gbit;

External Domain: The External Domain resource represents an endpoint in some facility that is outside the GTS service area;
Geant Testbed Service (GTS)

Example of user testbed topology. Benefits of using GTS.

Tree Network Topology with one controller, one root switch, multiple edge switches and multiple hosts.

It will cost to buy 5 switches, 9 computers, connect them, configure switches, install and configure OS at computers, place, power, support ...
Geant Testbed Service (GTS)
Who are GTS users that tested GTS in 2017-2018 years?

• **GEANT staff members**;

• **NRENs staff members**: NORDUnet, PSNC, DFN, CESNET, AMRES, RENAM, RENATER, RNP, etc.;

• **Universities**: Gottingen University at Cisco, Universite de Lorraine, TU Braunschweig, University Pierre and Marie CURIE, University of Perugia, University of Vienna, Otto-von-Guericke-Universität Magdeburg, Howard Community College, University Paris Est, Technical University of Cluj-Napoca, University of Massachusetts Lowell, University of Malaga, University of Rome, etc.;

• **Projects**: ICN2020, Fed4FIRE, PlanetLab, perfSONAR, SCION, NIIF/HUNGARNET, etc.;

• **Research centers**: i2CAT, etc;
Geant Testbed Service (GTS)
Statistic of GTS using: July, 2017 – September 2018

<table>
<thead>
<tr>
<th></th>
<th>2017 (6 months)</th>
<th>2018 (9 months)</th>
<th>Total (15 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of Projects created</td>
<td>22</td>
<td>54</td>
<td>76</td>
</tr>
<tr>
<td>Amount of Users, registered in Projects</td>
<td>34</td>
<td>86</td>
<td>120</td>
</tr>
<tr>
<td>Amount of Testbeds, created by users in Projects</td>
<td>63</td>
<td>384</td>
<td>447</td>
</tr>
<tr>
<td>Amount of Hosts, reserved and activated in Testbeds</td>
<td>200</td>
<td>1322</td>
<td>1522</td>
</tr>
<tr>
<td>Amount of Links in Testbeds</td>
<td>228</td>
<td>973</td>
<td>1201</td>
</tr>
<tr>
<td>Amount of Virtual Switch Instances in Testbeds</td>
<td>15</td>
<td>100</td>
<td>115</td>
</tr>
<tr>
<td>Amount of Bare Metal Servers activated in Testbeds</td>
<td>43</td>
<td>261</td>
<td>304</td>
</tr>
</tbody>
</table>
Geant Testbed Service (GTS)

How it works?

1. Researcher has a brilliant idea.

2. Need to create network with special topology to test this idea.

3. Researcher logs in GTS, constructs a testbed “DSL” document using a web GUI.

4. The User Agent sends the testbed description to GTS using the GTS API.

5. The GTS Provider Agent parses the doc and allocates resources to the testbed.

6. Resource ID information is returned to the user and user controls the testbed via the User GUI and other GTS API primitives.
Geant Testbed Service (GTS)
How to start using GTS?

At web page gts.geant.net user register Project and User (owner of the project):

- **Project name**: GTSMD
- **Project start and end**: 26-9-2018 to 27-9-2019
- **Project description**: For testing GTS facilities by research and education community of Moldova
- **Project requirements**: Up to 20 VMs, 2-3 BMSs, 2-3 VSI switches
- **Project extra comments**
- **VPN user**: vpnuser
Geant Testbed Service (GTS)
A domain specific language for testbeds description

Domain Specific Language (DSL) based on Groovy - an object-oriented language for the Java platform.

Using the DSL language, the user describes resources, testbed topology and attributes.

```groovy
Testbed {
    description = "Testbed with 2 hosts and 1 link"
    id = "dslType"
    host {
        id = "H1"
        location = "PRG"
        imageId = "Ubuntu-18.04.qcow2"
        flavorId = "c1r1h10"
        //x = "299"
        //y = "127"
        port { id = "p1" }
    }
    host {
        id = "H2"
        location = "BRA"
        imageId = "CentOS-7.x.qcow2"
        flavorId = "c1r1h10"
        //x = "548"
        //y = "120"
        port { id = "p1" }
    }
    link {
        id = "H1H2num1"
        port { id = "src" }
        port { id = "dst" }
    }
    adjacency H1.p1, H1H2num1.src
    adjacency H2.p1, H1H2num1.dst
}
```
Demo
Different Testbeds creation, using Drag’n’DrED (drag and drop editor)
Export/Import of Types, Testbed reservation and activation,
Access to resources, Deactivation/Activation/Releasing.
Thank you

Questions?

This work is part of a project that has applied for funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 691567 (GN4-1).